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Abstract 0

This study concerns the effects of test multidimensionality on

recommended item bias statistics. Simulation data samples (N-l,000 each) on 9

a 50 item test were generated using a factor model described and used by

Drasgow and Parsons,(1983) and Parsons (1982).> Subpopulation differences on

common factorqL led to item bias that was identified to some extent by both ,

chi-square and item response theory (2 parameter logistic curve bias

indices. The signed indices were especially effective in distinguishing

biased items from unbiased items. However, the use of either the signed

chi-square or signed IRT index in ultidimensional data clearly requires (an.

a priori knowledge of which subpopulation is at a disadvantage. This rat-het-

unexpected finding suggests further study of the properties of signed .

indices as well as a reevaluation of previous simulation research that has

appeared to support their validity. y:
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A MONTE CARLO STUDY OF ITEM BIAS DETECTION

IN MULTIDIMENSIONAL TESTS

May, 1984 Draft

/

Mental tests have had a controversial history. Persistent differences

between racial groups on standardized aptitude test scores have suggested

the potential for unfair discrimination against members of different racial

and ethnic subpopulations. Because many occupational and educational

opportunities are affected by test scores, the issue of test bias has

consequences for many people in our society. /' -'

The study of test bias has intensified since the passage of the Civil

Rights Act of 1964. Arvey (1979) provides a review of much of the research

in this area. Some researchers have preferred to concentrate on item rather

than test bias; logically inferring that a biased test must contain biased

items. This approach allows the possibility that some items on a test are

biased while others are not.

More than a dozen4statistical techniques I" bee proposed for

detecting biased items . Various techniques have been studied theoretically

and empirically with real and simulated data (see Hulin, Drasgow & Parsons,

1983; Bark, 1982).

6ere appears to be a preference for techniques based on a latent trait

or item response theory (IRT) because sample estimates of population item

parameters are invariant. This advantage occurs because, when the IRT model

is valid, item parameters are invariant with respect to subpopulation

ability distributions., Except for sampling error, any item should have

... . . . . . . . . . . . . . . . . .
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identical IT item parameter estimates (within a linear transformation) in

two or more subpopulations, regardless of ability distribution. Usually,

the specific IRT model, has been the three parameter logistic model

(Birnbaum, 1968) and has been referred to as Item Characteristic Curve-3 or

ICC-3 though all IRT models have the parameter invariance property.

The main drawback to ICC-3 is the costly estimation of model parameters

and hence bias statistics. Therefore, some previous empirical research has

focused on identifying less costly techniques that converge with IRT

methods.

Another aspect of item bias that deserves attention is the robustness

of item bias statistics when assumptions of the IRT model are violated. For

instance, the assumption of unidimensionality is likely to be violated on

tests that are developed to predict external job or educational performance

criteria. Much of the concern about unidimensionality is how to define it

operationally (McDonald, 1981). Recently, Drasgow and Parsons (1983) and

Parsons (1982) have shown that unidimensional IRT models can be applied and

interpreted in multidimensional tests. These latter studies will be

described later. However, the-consequences of multidimensionality for item

bias statistics are unknown. This paper will proceed with a definition of

item bias as well as a review of some studies that have compared the

relative effectiveness of various statistical indices of bias. Then, a

brief description of the Dragow and Parsons (1983) methods for generating

multidimensional data for item response simulations will be given. Finally,

four cases of test multidimensionality and item bias will be described from

7" ' ' '', -. - - -- '-- . -j " - '. - _J . '7 " .-  " "- " .' - '- 3 . -T  -' - . .- .- '' - - " -."oZ .. .. t,. -. - "- . - ; - r ; - -. r " . - " - ; -I;
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which sample data will subsequently be generated and analyzed for the

effectiveness of item bias statistics.

Defining Item Bias

Item biap is present when individuals from different subpopulations

with the same amount of a latent ability tend to have different

probabilities of responding correctly to an item. One cause of item bias

would be the use of subpopulation specific information in an item (e.g.,

information not relevant to the construct or criterion of interest). In

this case, members of one subpopulation have an unfair advantage and would

have a higher probability of a correct answer. Note that biasing factors

should be considered as continuous variables and not as distinguishing

characteristics between subpopulations. Clearly, not all members of one

group will have exposure to some culturally specific information, while all

members of another group will have been denied exposure to the information.

Just as mean differences on test score distributions are associated with

mean differences but overlapping distributions on primary abilities, we will

associate possible mean differences on secondary attributes with overlapping

distributions. .

Item Bias Statistics

There are a variety of statistics that have been suggested for

identifying item bias. Rather than review them here, the reader is referred

to an article by Ironson and Subkoviak (1979) or books by Hulin, Drasgow and

Parsons (1983) and Beck (1982) for reviews.

S .-. °

',°o • -t
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Most previous studies have used an IRT index based on the logistic

model and a Chi-Square index based on total score intervals. The general

IRT approach will be described first. In item response theory, the

probability of a correct response to an item is a function of one or more

item parameters and the latent ability of the examinee. In the case of

multiple choice tests, the logistic model could be the three parameter

logistic model or:

P.(e) - C. (l-C.)/(l+exp(-a.D(G-b.))) (1)

where P.(9) is the probability of a correct response on item ifor a given
-

level of e (latent ability), ai is item discrimination, b i is item

difficulty, D is a scaling factor usually set to 1.702, and C. is the

pseudo-guessing parameter that reflects the probability of a correct

response at very low levels of 0. Other possible logistic models are the

one parameter model (Rasch, 1960; Wright, 1977) or the two parameter

logistic model (Lord and Novick, 1968). Choosing among the models depends

on the user's goals. Actual responding to multiple choice questions would

seem best described by the three parameter model above, but others have

argued that the mathematical properties of the one parameter model make it

better in many cases. In the current study, the author chose to use the two

parameter model because it best met the demands of the current study. This

will be elaborated upon later in this paper.

Regardless of the model chosen, item bias can be defined in a number of

ways within the IRT framework. First, one can test for the difference

between parameters estimated in two or more subpopulations (Lord, 1980).

More common recently has been the computation of differences between two

' J,
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item characteristic curves estimated in two subpopulations. Suppose that

P (e) represents the function relating e to the probability of a correct

response for an item in Subpopulation 1 and P (e) represents the

corresponding function in Subpopulation 2. Then, the area between these two

item characteristic curves could be approximated by:

301
ALGICC " (P(G) - P (e)) x .02 (2)

P(e) is the probability of a correct response at 0 level j in

subpopulation 1 and P2(0 ) is the probability of a correct response at 0
2j

level j in group 2. The value .02 is the width of the theta interval. Note

that this statistic would tend to reflect an average difference between

curves with differences in different directions cancelling each other out.

This approach will be called the Algebraic Sum approach and will be referred

to as ALGICC in this paper.

A statistic that does not average the differences between curves is the

Absolute Sum approach and is computed as:

301
ABSICC =,X ABS(PI(e)- P2(e.))x .02 (3)

where ABS is the absolute value function. In this case, regardless of the

direction of the difference, it is still added to the bias statistic.

The chi-square approaches are conceptually similar to the IRT

approaches but without the theoretical elegance. Scheunemann (1979)

suggested that an investigator could sort examinees from each subpopulation

into five intervals based on total test score. For each subpopulation in

each interval, the proportion of correct responses is computed and compared

piil

t" °* a
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to the expected proportion. These proportions are then combined over total

score intervals to compute a chi-square or:

(Pl -~ ) (P. - p )
ABSCHI N +Sj ( + N2-  (4) .--.

jl PTj(I - PTj PTj (l - PTj)

where P represents the total correct on an item and N is the number of 9

examinees for subpopulation I in total score interval j, while P2j is the

proportion and sample size for subpopulation 2. P and NTjrepresent the

proportion and sample size for both samples combined. In this case, as in .

ABSICC, the statistic does not reflect direction of difference. In order to

include direction, an algebraic sum is computed as

5 (P 1. - P (P 2i - P )2
ALGCHI - ji SjNljpT 1 pT SjN-2j pj( 5

jl (I -P) PTj(l -PTj

where S. = I if PIj < P2jP Sj = -1 if P1. > P2 j and S. - 0 if PIj P2j and

will be referred to as ALGCHI.

Several recent studies have compared the effectiveness of these

statistics. Rudner, Getson, and Knight (1980) compared two transformed item

difficulty approaches, three IRT methods, and two chi-square approaches in L

simulated item response data sets generated from 112 different combinations

of test conditions. Item responses were generated on the basis of the three

parameter logistic model with varying degrees of bias built into the _

responses from different groups. Of particular interest in this study was

the finding that the five interval signed chi-square index (ALGCHI) was

found to perform quite well. The authors concluded that "with five total

score intervals, the chi-square technique was found to be as effective as

the three parameter item characteristic curve theory technique, under most

I

. . . . . . . . .. . . . .. . .,- .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
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of the investigated conditions" (Rudner et al., 1980, p. 8). It should be
a

noted that across all 112 test conditions, the three parameter logistic

index correlated .80 with generated bias. While the 5 score interval Chi-

Square index correlated .73 with generated bias. Other results for their

0
study showed that correlations with generated bias ranged from a low of .55

for the one parameter IRT model to .68 for a transformed item difficulty

index.

Shepard, Camilli and Averill (1981) examined the performance of various

indices in real data. They chose a total of 16 item bias indices which were

variations of the transformed item difficulty method, the item discrimina-
p

tion method, the three parameter IRT method, the one parameter IRT method,

and the chi-square method. They studied convergence of these methods in

samples of 490 black, 551 Chicano, and 552 white pupils in the fourth,

fifth, and sixth grades. The dimensionality of the utilized Lorge-Thorndike

verbal and nonverbal tests was described on the basis of the size of the

first principal factor relative to the other factors. Variance accounted

for by the first factor ranged from 17.5% for the black sample to 19.7% for

the white sample. The size of subsequent factors dropped to about 5%. The -

authors interpreted this as supporting the contention of one general factor
p

in the test.

Though this study could not determine correlations with true bias

because the data were real and not based on a simulation model, a factor

analysis of correlations between the 16 indices indicated that the full

unsigned chi-square (ABSCHI) method loads on the same factor as the unsigned

ICC-3 index (ABSICC). Also, the signed ICC-3 (ALGICC) and signed chi-square

.,......o.
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(ALGIcC) methods both loaded on another factor. Based on this and other

results, the authors conclude that "it may be safe to recommend that the

signed full chi-square technique could be used as the best substitute for

the ICC-3 b differences and signed area" (Shepard et al., 1981).

Hultidimensionality and Jtem Bias

In studies of real data (e.g., Shepard et al., 1981) observed

differences in various item statistics between groups could also be due to a

lack of fit of the model to the data. One major concern has been that the

data will most likely be multidimensional. The frequently used

L
unidimensional IRT models (due to availability) can be fit to

multidimensional data (Drasgow and Parsons, 1983; Reckase, 1979) but the

conceptual meaning of item bias as well as the effect on computed bias

statistics has not been given much attention. Researchers may regard

multidimensionality as "spurious" bias rather than true bias. Spurious bias

is that which tends to invalidate statistical indices of bias by including

lack-of-fit and sampling error effects. For example, Shepard et al. (1981)

state "that when parameter estimates are not linearly related across groups

this may be due to a lack of model fit rather than bias. For example, a

violation of unidimensionality assumption could be detected as bias when

group differences are not the same across traits -- an effect that is still

consistent with the interpretation of bias." Shepard et al. go on to say

"If a test were multidimensional, differential differences in group

abilities across factors would appear as bias." These authors seem to be

implying that item bias requires that the test data be very well fit by the

. . . o

L°°,°,.

............................................



9

unidimensional IRT model. On the other hand, Linn, Levine, Hastings, and

Wardrop (1982) consider multidimensionality a form of bias because "it can

lead to apparent differences in the primary ability when, in fact, there are

no such differences." Before forming research questions concerning

multidimensionality and item bias, it is constructive to review the recent

research on multidimensionality and IRT.

Multidimensionality and Unidimegsional IRT

Of all possible IRT models, unidimensional IRT models have had, by far,

the greatest application among IRT testing practitioners and theorists. In

constructing tests, practitioners are advised to retain items that conform

to the unidimensionality assumption. Only recently have researchers begun

to investigate the implications of violating the assumption.

Reckase (1979) provided an interesting demonstration of what happens

when unidimensional IRT models are fit to tests with one or several major

factors. It appeared that a test with one large first factor could be fit

quite well in spite of the presence of other factors. On the other hand,

when two major factors were present in the test, the unidimensional model
appeared to fit only items that loaded highly on one of the two factors.

In a Monte Carlo study, Drasgow and Parsons (1983) expanded the scope

of Reckase's (1979) study by including finer gradations of the size of the

major factor. They found that for both the two and three parameter logistic

models, the unidimensional IRT model fit test data that had a surprisingly

high degree of heterogeneity among items, Drasgow and Parsons suggested

:'~~~.:.°oo.o........ o.-o.. ............. ........ ... .. .. ... -.

• ,. . .' . ... .. ... _. ... .. .- .. .- ., '.. .. '.. - '.. . . .'- '...- .- ., -. ' - .- ' . -.- ,.. . . . . . . . . . .. . . . .... . ... .. .... .-..- --.-.- '.. .... .-. ,.. .-.-. . . , .-. . .. .'
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that strict tests of unidimensionality might reject items and tests that

they had found to be estimated satisfactorily.

Parsons (1982), using the same Monte Carlo methodology, found that

under the condition of oblique factors, additional factors in the test

actually improved the fit of the IRT model. He pointed out that as the

number of correlated factors approaches the number of items, the independent

variance of each factor becomes small relative to the variance shared with

the other oblique factors. This caused the test to conform better to an IRT

model with only one dimension. Note that the above results were obtained

with oblique, not orthogonal, factors.

The Simulation Model

The basic model of multidimensional tests used in this and previous

studies (Drasgow and Parsons, 1983; Parsons, 1982) had a general latent

ability that affected all items on the test and more specific abilities that

were each limited to a subset of items on the test.

Multidimensional data structures with potentially biasing specific

ability factors can be represented by the common factor model (Thurstone,

1947) but further transformation is necessary to adequately model

dichotomously scored item responses. The coumon factor model represents

continuous observed variables, x, as weighted linear combinations of

hypothetical common traits or factors, y, that account for covariation among

the variables and unique factors, e, that account for some variance of x but

not covariance. This model can be written as

x Ay + Be (6)

-z-

**.~ . :.n.
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where x is a vector containing observed variables xi, A is the n-by-k matrix

of loadings on the k common factors, y is a vector containing k common

factor scores, yi, B is an n-by-n diagonal matrix with loadings along its

diagonal and e is a vector containing the n unique factors e. The unique

factors are assumed to be mutually uncorrelated and uncorrelated with the

common factors. For item response data, the x factors can be thought of as

unobservable response propensity variables that underlie the observed

thdichotomous responses. Let aij denote the loading of the i response

propensity variable on the jth factor and let Oi denote the single loading

of the ith response propensity variable on the th unique factor.

Lord and Novick (1968) show that for the two parameter normal ogive IRT

model in unidimensional data,

a *

or the item discrimination parameter for item i, a, is directly related to

the factor loading ai . They also show that

b.
I a i

or the item difficulty for item i, bi, is directly related to the z

transformation of the common item difficulty statistic (proportion of

population that gives incorrect response). Drasgow and Parsons (1983)

demonstrated that these relations hold very well in sample data generated

for a three parameter logistic IRT. Therefore, common factors and factor

scores can be used to create multidimensional simulation data.

...........................................................-.
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In the proposed study, the common factor loading matrices, A, are

specified to represent different characteristics of tests. First, factor

loadings will range between .40 and .80 in the A matrix. This range was

selected to represent items with low to high a parameters. Table 1 presents

the loading matrix to be used in the present study. To achieve this loading

matrix in aptitude test data, an oblique rotation would probably be

necessary. Let 9 represent the matrix of first order factors after rotation

to the simple structure in Table 1. It is fundamental to the simulation

model presented here that there is one second order factor underlying the

matrix of first order common factors.

Schmid and Leiman (1957) describe a hierarchical factor model that is

based on a transformation of the k oblique first order factors to a matrix

with k+l orthogonal factors where the additional factor is the general

factor represented in terms of item response propensity variables rather

than first order factors. Basically, the larger the values in 0, the

stronger the general factor or the less the factor differentiation.

The hierarchical factor matrix with k+l columns is used to compute item

response propensity scores, xi. To do this, a vector of k+2 factor scores

is generated to represent the general factor, the k common first order

factors, and the e. (unique) factor. Factor scores are generated as1

3-.independent, normal variables by the International Mathematical and

Statistical Library (IMSL) Fortran subroutine GGNPM. The mean of the factor

score distribution can be varied for different subpopulations. Factor

scores are linearly combined according to eq. (6). The continuous variable,

xi, is transformed to a dichotomous variable, ui, as follows. First, as
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part of the simulation model, each item, i, is assigned a value, denoted by

Yis that is related to the desired proportion of examinees knowing the

correct response (p). Then the continuous response propensity variable, xi,

is compared to ¥i and

u I if x. > Yi

and

u. - 0 if x. < Y.i

yi equals that point on the abscissa of the normal distribution (mean 0,

standard deviation 1) to which the desired proportion of the population

knowing the correct response (p) is represented by the area under the curve

to the right of Y. and 1-p lies to the left of Y.. See Lord & Novick (1968,

p. 370) for further discussion of this transformation. For the proposed

study, the Yi are presented in Table 1. These values were specified to

represent items where the proportion of examinees in the majority

*population, knowing the correct response to an item, are .1, .2, .3, .4, .5,

.6, .7, .8, .9. The values are equally represented among items by randomly

selecting without replacement from 50 yi values and assigning them

sequentially to the 50 items. For any desired factor model, a simulated

examinee's item score vector, U, (U, u2, ... , u ) can be obtained by

generating a vector, y, computing P(O) for each item and comparing this -o

value to a random number drawn from a uniform distribution in the interval

~[0,11.

item bias can be considered in data sets that earlier studies suggested

had tolerable multidimensionality, assuming that more extreme cases would be

identified as inappropriate by statistical procedures such as Reckase's
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(1979) suggestion that the first principal component equal at least 20% of

the total variance in a test or Drasgow and Lissak's (1983) parallel

analysis method that requires more computation, but is more compelling than

a 202 rule of thumb. The model used in the current study is based on a

general factor (G) and two comon factors (F1 and F2) where the population

correlation matrix actually has rank 2 when coimunalities are in the

diagonal of the matrix. The representation by three factors is the

hierarchical factor structure that was developed by Schmid and Leiman (1957)

and subsequently used by Humphreys (1962) in studies of human performance on

cognitive ability tests.

For the current study, the two common factors can be thought of as

.verbal ability and quantitative ability underlying performance on a test of

mathematical reasoning with word problems. In the population of

individuals, the fairly high correlations between these two factors and

therefore comunality between them can be represented by the general factor

with the respective unique components being orthogonal to each other and to

the general factor. We are interested in measuring the general factor . _

although the unique portions of Verbal ability and quantitative ability

affect performance on the test. In this context, items can be bLased in a

number of ways and will serve as the example for describing these ways.

Suppose, for instance, that the intercorrelation between coon factors

F(verbal) and F(quant) is very high. Then the unique variance attributed to

each common factor is trivial and for item parameter purposes, the test and

resulting item response data are almost unidimensional. Note, a correlation

of 1.0 between factors reduces to a single factor.

-.. . . . . . -.. . . . . . . . . . .. . ,
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On the other hand, if the factors are only moderately correlated, then

the general factor will be smaller though still present (by definition of

the model). Item parameter estimates for a unidimensional model in this

multidimensional data will be subject to two types of error. One is k- --

conceptually based and derives from the fact that a single factor or

dimension simply cannot capture completely the systematic effects on item .a

responses. This will be termed lack-of-fit error. The second type of error

is sampling error. The lack of complete specification of ability by the

unidimensional model leads to less reliable estimates of all parameters in

the model. Analogously, estimation of item parameters is more accurate if

true ability is known. When estimates of ability must be part of the total

parameter estimation procedure, then logically there will be more error in

item parameter estimates.

In the above cases, we could consider two subpopulations and how an

item could be biased against one subpopulation or the other. In one regard,

the model is inappropriate for both groups (due to lack-of-fit), but not

biased towards either group with regards to the other. However, larger

parameter estimation errors that occur because of multidimensionality could '

lead to large observed ICC differences than under the condition of perfect

model validity.

Next, consider the cases where the distribution of abilities underlying

the factors differs between subpopulations. The unidimensional bias indices

might identify appropriately multidimensional items as biased as follows.

In the example where quantitative ability and verbal ability correlate

rather highly, the cmon variance between factors is most closely

2~ \ ~ * . . *: *.* * .. .
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associated with test performance and hence the construct, mathematical

reasoning. However, if subpopulation differences in ability distributions

are present for the unique portion of verbal ability, then the lover verbal

ability group would have lover probabilities of success on the items, even

though the general factor loadings and general ability distributions are

identical.

Methods

Simulated item response data were generated in the same manner as the

Drasgow and Parsons (1983) and Parsons (1982) studies. A factor population

factor model was specified with two oblique factors. The degree of

correlation between factors was varied. Since higher correlation implies

less factor differentiation, a factor intercorrelation of .5 was set as high

differentiation (but within tolerable limits for logistic parameter

estimation). Low differentiation will refer to a factor intercorrelation of

.81. Factor intercorrelation of .50 was the approximate lower limit found

by Drasgow and Parsons (1983) for a meaningful estimation of 0 in

multidimensional data.

Along with the two levels of factor differentiation, a subpopulation

difference on a minor factor (secondary ability) was either present or not.

Note that IRT parameter invariance properties have been defined for a

unidimensional e which tends to represent the general factor in

.. multidimensional data. Therefore, the equating of ability distributions

between subpopulations does not directly affect known differences in

secondary ability distributions. This model implies exactly the same factor

~. . . . . . . . . . . . . ..
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structure matrix for both subpopulations, vith only the distribution of -

* secondary ability differing between groups. These population structure

matrices appear in Table 1. The oblique factor matrix is constant

throughout all four cases. Only the transformation matrix affects the size

of the loadings on the general and orthogonal common factors.

Hypothetical ability vectors were created by using the 114SL subroutine

GGNPM to generate four random factor scores from a normal distribution with

mean-G and standard deviation of 1. One random normal deviate represents an

individual's general ability score, one deviate represented an individual's

ability on factor I (F )score, one deviate represented an individual's
I

*ability on factor 2 (F 2 score, and one deviate represents the factor score

unique to each item. If the vector of three common factor scores is

- . represented by "y" and the factors that are unique to an item are

* - represented by "e," then a vector of response tendency scores, x, was

determined according to eq. 6.

To clarify the combinations of factor correlations and ability

distributions to be analyzed, I will nominally label low factor

differentiation and no secondary ability difference as Case 1, low factor

differentiation and mean secondary ability difference of 1.0 as Case 2, high

factor differentiation and no secondary ability difference as Case 3, and

high factor differentiation and mean secondary ability difference of 1.0 as

Case 4. To specify the true effect of these combinations on the probability

of correct answer to each item by different subpopulation, the item response

probability surface can be approximated by assuming that for any given

ability level for the general factor, the secondary abilities will have a
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mean ability level equal to their mean. That is, the distributions are

multivariate normal and variance is homoscedastic. The "average" item .-

response surface is then reduced to a line and an item characteristic curve.

For example, when G=-3.0, the mean Fl score is -.5. Therefore, the correct

response propensity on item 1 in Table 1 is .021 when G-3.0. If the mean

Fl score is +.5 (a different subpopulation), then the probability of a

correct response on item is .033 when G--3.0. The differences between each

pair of item response surfaces (different subpopulations) were computed

between G--3.0 and G-3.0 at intervals of .02, the difference multiplied by

p.02, and sumed over the 301 intervals or:

301
ALGDIF - [(P(G) - P2.(G)) x .02] (8)

i 1i 2i

These differences can serve as population level item bias indices for the

true underlying item response model. Note that when there is no difference

in mean ability on either Fl or F2, there will not be any difference in the

true item response surfaces. The population level bias indices ranged from

.194 to .484 in Case 2 (low factor differentiation) and from .302 to .994 in

Case 4 (high factor differentiation). In both cases, bias was present for

the first 25 items only.

-7 For each Case, two samples of 1,000 simulated item response vectors

were generated for a total of eight samples. The sample size was chosen for

the two parameter model because earlier studies by Drasgow and Parsons

(1983) had demonstrated good parameter estimation with this sample size.

For each case, the two samples were input to LOGIST, a maximum likelihood

parameter estimation program (Wood, Wingersky, & Lord, 1976). Default

I

........ ,..**..*J

:~."-- .--............. ".'...".... ..""'" " .... ".
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program parameters were chosen in all cases except the choice of the "c"

parameter which was fixed at zero.

All parameter estimates were equated between subpopulations before any

comparisons were made or IRT bias indices computed. Since the scaling of e

is arbitrary and LOGIST estimates of e have a mean 0 and standard deviation

1, item parameters were rescaled within each subpopulation so that the b's

had mean = 0 and standard deviation - 1. The equating constant for each --

sample were "SD" - Standard Deviation of b's and '"W' - mean of b's after

eliminating all extreme b's (absolute value greater than 3.0). Then

S b- MN
bm SD

and

a =ax SD

where b and a are the transformed values.

In past studies, the computation of IRT curve differences is as

follows. First, because the c parameter is frequently poorly estimated,

Lord (1980) has recommended that samples be combined for estimation of c's

to obtain more stable estimates. Then, a's and b's are estimated in each

sample with the c's fixed at their earlier estimated level. This procedure

suggests that bias in the c parameter will not usually be detected because

of sampling error. For this reason, in the current study, 's were fixed at

0 for both generating item responses and estimating the parameters. This

special two parameter case of the three parameter model does reduce the

* generalizability of the results, but should reduce the number of response

"-0

) - . ... ---.
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vectors necessary for parameter estimation and also the cost of the

parameter estimation.

The item bias statistics can then be computed by comparing equated

estimated item characteristic curves. As in the true item response

functions, the estimated curves were compared in the interval of e--3 to +3.

The difference between subpopulations in estimated response probabilities

were computed at intervals of .02 and summed across the 301 intervals. Both

the algebraic sum and the sum of the absolute value of the differences were

computed. The formulas were given in equation 2 and equation 3. These

summed area differences were computed for the four cases described above. --

In addition to the IRT item bias index, the method based on the

proportion of individuals in each sample who got each item correct in five

total score intervals was also used. This is the full Chi-Square method

* suggested by Camilli et al. (1980) which has received some empirical support

as a reasonable approximation to the more costly IRT models. The index is

given in equation 4 and equation 5.

Results

The results will be presented on a case by case basis with comparisons

and generalizations made at the end.

Case I results concern the case where there is low differentiation and

no mean difference on Fl. As noted in the discussion of true differences in

item response surfaces, there is no population level bias in Case 1. Any

observed large values in item bias statistics is solely due to lack of model

fit and sampling error. Table 2 presents the estimated item parameters, the

..............................
- . . . .* . .. ..... *.- - - .... **...*....- . *. . . . .
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chi-square statistics, and the IRT curve differences, In general, the

estimated parameters appear similar between the two samples. Figures I and

2 show the relationship between equated a and b parameter estimates

respectively. Note that the estimated a parameters show more scatter than

the estimated b parameters. The correlation between a's is .93 and between

b's is .98. Thus, at the level of item parameter estimates, there seems to

be a good deal of agreement between the two samples.

Averaging the four item bias indices for the first 25 items and then

the second 25 items in Table 2 shows that there is little difference for any

of the bias indices. For the signed chi-square index (ALGCHI), the mean is

-.300 for the first 25 items and -.636 for the second 25 items. For the

unsigned chi-square index (ABSCHI), the means are respectively 5.26 and

4.71. For the signed IRT index (ALGICC), the means are .013 and .032

respectively. Finally, the means for the unsigned IRT index (ABSICC) are

.135 and .147. The distinction between first and second 25 items is only

for comparison to Cases 2 and 4 where there was a difference in the response

probability surface.

Case 2 results are for the situation where there is low factor

differentiation and a mean difference in F1. The item parameter estimates

and bias indices appear in Table 3. The correlation between equated a's is

.92 and between equated b's is .98. Figures 3 and 4 show the relationship

between the estimated a's and b's respectively.

The signed IRT index and the signed chi-square index tend to be higher

in the first 25 items (mean ALGCHI - 11.52, mean ALGICC - .086) than the

second 25 items (mean ALGCHI - -9.81, mean ALGICC = -. 166). The unsigned

.... ~~ . ...
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U indices are both about equal in the two sets of items. For the unsigned

* chi-square index, the first 25 items had an average chi-square equal to

14.46 and the second 25 items had an average chi-square of 11.48. This

difference is in the expected direction but both tend to be above the

critical value for chi-square. For the unsigned IRT inden, the mean was

*.174 for the first 25 items and .182 for the second 25 items. Based on

these results, it appears that both the signed indices and possibly the

unsigned chi-square index are effective when there is only slight

differentiation between factors, but actual bias due to a subpopulation mean

* difference on a factor other than the general factor.

In case 3, there is a higher degree of factor differentiation and

therefore poorer model fit. However, there is no population level bias for

any of the items. Table 4 shows the item parameter estimates and bias

*statistics. The correlations between estimated a's is .92 and between b's

- is .98. Figures 5 and 6 show these plots and show that there are no

outliers and generally better agreement for the b's.

-When averaged for the two sets of 25 items, the bias statistics in

Table 4 show that there is virtually no mean difference for ALGICC (.080 vs.

P ., .030) or for ABSICC (.149 vs. .137). For the Chi-Square indices, the mean

differences were small for ALGCHI (.590 vs. -1.931) and somewhat larger for

ABSCRI, but in the wrong direction (3.82 vs. 5.53). Again, there is no.

population level bias to explain this so it can be considered sampling

* error.

* The final results are for Case 4 which had high factor differentiation

and a mean difference of 1.0 in F1 Table 5 presents the estimated item
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parameters, the two ICC difference statistics, and the two chi-square

statistics for the 50 items. Note that in general, the estimated parameters

again appear somewhat similar. The comparison of the transformed a's in the

two samples is shown in Figure 7. The correlation between a's was .90. The

comparison between b's is shown in Figure 8. The correlation between b's

was .96.

The means for the two item sets on the four bias indices in Table 5

also show that both IRT indices and the signed chi-square index tend to be

higher for those items that were inherently biased (the first 25 items) than

for those items that were unbiased (the second 25 items). For ALGICC, the

means were .326 and -.076. For ALGCHI, the means were 17.68 and -16.62.

For ABSICC, the means were .340 and .187. On the other hand, for ABSCHI,

the means were 18.97 and 17.29, which does not suggest much detection

effectiveness.

Next, some analyses will be conducted to compare the results across

cases. As mentioned in the introduction, item bias statistics are used to

identify items that are biased. Two types of errors can be made in this

identification. First, failing 'to identify a biased item as such is false

negative error and falsely identifying a non-biased item as biased is a

false positive error. Detection at the chance level means that items are

labelled as biased in proportion to their presence in the test. That is, if

10 items were biased in a 50 item test and a bias index only detected at the 9.

chance level, then for any number of items labelled as "biased", on the %

average .20 (10/50) would be actually biased and .80 (40/50) would not be

biased. By rank ordering the items by each item bias statistic and noting

........- .,- .
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the proportion of biased items identified as such at various levels of

chance detection, we can gain some idea of the effectiveness of each. These

analyses will only be conducted for all four cases even though only in Cases

2 and 4 vas there actually any population level bias.

Figures 9, 10, 11, and 12 represent the results for the respective

cases. Note first of all that in Figures 9 and 11, all four bias indices

tend to follow the diagonal which represents chance detection. This is

*appropriate because there were no population biased items and the first 25

items were only nominally labelled as such. Therefore, it appears that

none of the indices is over or under identifying the two sets of 25 items

when there is no inherent bias.

Looking at Figure 10, it is clear that the two signed indices (ALGCHI

and ALGICC) lie above the chance diagonal with neither one clearly superior

* to the other. The unsigned chi-square index, ABSCHI, does better than

* chance at low numbers of items identified, but not the higher numbers. In

Figure 12, the two IRT indices and Chi-Square signed index again rise above

* the diagonal, showing good detection. The unsigned IRT index is slightly

below, but still better than chance. Only the unsigned chi-square index

appears to detect only at chance levels.

There is another perspective to consider on the various bias indices in

the four cases. If an investigator has no a priori knowledge of the group

that is disadvantaged by the items on a test, then the final sign associated

with a computed index cannot be used to aid identification. For instance,

if an item has a signed Chi-Square of 15.00 or -15.00, it will still be -

labelled as biased against one group or the other. In the cases where there
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was an ability difference (Cases 2 and 4), both signed indices tend to have

larger negative values for items that are population unbiased. For chi-

square, the mean value is -12.72 across Cases 2 and 4 (ability difference)

as compared to -1.28 in Cases 1 and 3 (no ability difference). For ICC, the

mean value is -.121 for an ability difference and .031 for no ability

difference. For both chi-square and ICC, these values are large enough to

cause to misidentification.

Discussion

This study examined the effects of multidimensionality and

subpopulation differences in secondary abilities on commonly used item bias

indices. The results were quite clear and suggest that in cases where the

* general factor is quite strong (though the test is not unidimensional) and -

where the general factor is not as strong (the test is clearly multidimen-

sional, though all common factors are correlated), both the difference

between estimated item characteristic curves and Camilli's (1 0) full chi-

square method will identify items biased because of subgroup differences on

secondary ability. This study also suggests that the signed index is best

in both cases. Both conclusions assume that the investigator has a priori

knowledge of which group is at a disadvantage on the items.

The more traditional definition of item bias assumes a single latent

ability IRT model where different subpopulations have different item

characteristic curves. The current findings suggest that the unidimensional

models can approximate multidimensional data and identify bias that is

occurring in distributions of secondary abilities rather than item parameter

- : ' - - -- -. ..... "" " "" ...-.. *. -. -. ""* - * .- ?. . . ------- .-- ,-"' "*, *. . . . . ..):; :::::: ' :?:: ?.:. .
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differences. This is an important finding, because in real data, the

unidimensional model is unlikely to be totally valid. In addition, if the

general factor represents the only valid variance in observed teat scores

then bias that results from differences on secondary abilites is still bias-

and presents a disadvantage to the members of the group that is lover

on this ability. To repeat, the notion of bias only holds if the secondary

ability is irrelevant to the construct or criterion of interest.

As mentioned in the introduction, the three parameter logistic model

* has received most of the attention as a model for detecting item bias. The

current study can be viewed as a special case wehere the c parameter is held

constant at 0. Drasgow and Parsons (1983) had studied the effects of

multidimensionality on IRT parameter estimates and found that the two

parameter model fit slightly better than the three parameter model.-

Therefore, the current effects would likely be similar for item bias indices

in the three parameter model. As noted in the introduction, the recoumended

procedures for using the three parameter bias index includes setting the-

* estimated c's to a common value for the two groups suggesting that sampling

*error will swamp any true difference in c parameters. Therefore, little or

no generalizeability is lost by foregoing the estimation of the parameter in

the current study. However, it is still an empirical question and worth

future consideration.

Besides generalizing to the three parameter model, there are also many

other issues worth studying in the general area of item bias and multi-

*dimensionality. For instance, it would be useful to know how the ratio of

*biased to unbiased items affects detection effectiveness. The current study
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used 25 items of each. A smaller number of item biased by subpopulation

differences on a secondary factor would mean that the secondary factor

itself was smaller. Therefore, the unidimensional IRT model would fit the

data better. But the current results suggests that under the null condition

of no biased items, simply increasing differentiation among factors does not

appreciably increase bias indices. That is, lack-of-fit error by itself

does not lead to misidentification of unbiased items as biased. a
Probably the most important issue to be studied is how to interpret the

signed indices when the investigator does not a priori designate one group

as disadvantaged. In multidimensional data, this would lead to correctly

identifying some biased items, but also misclassifying some unbiased items.

Earlier studies have not confronted this issue either.

In summary, the current study demonstrated that item bias resulting

from subpopulation differences on a secondary ability will be detected as

such. A non-trivial degree of multidimensionality can be tolerated by both

the lIT and Chi-Square indices. Research on the interpretation of signed

bias indices is still required.

- .
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Table 1

Orthogonal and Oblique Population Structure Matrices

Orthogonal Factors Orthogonal Factors
Item Oblique Factor High Differentiation Low Differentiation

F1 F2 6 F1 F2 6 F1 F2

1 0.400 0.6000 0. 283 0. 283 0.-000 0.360 0.174 0.000
2 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000
3 0.600 0.000 0.424 0.424 0.000 0.540 0.262 0.000
4 0.700 0.000 0.495 0.495 0.000 0.630 0.305 0.000
5 0.800 0.000 0.566 0.566 0.000 0.720 0.349 0.000
6 0.400 0.000 0.283 0.283 0.000 0.360 0.174 0.000
7 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000
8 0.600 0.000 0.424 0.424 0.000 0.540 0.262 0.000
9 0.700 0.000 0.495 0.495 0.000 0.630 0.305 0.000

10 0.800 0.000 0.566 0.566 0.000 0.720 0.349 0.000
11 0.400 0.000 0.283 0.283 0.000 0.360 0.174 0.000
12 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000
13 0.600 0.000 0.424 0.424 0.000 0.540 0.262 0.000
14 0.700 0.000 0.495 0.495 0.000 0.630 0.305 0.000
15 0. 800 0. 000 0. 566 0. 566 0 .000 0. 720 0 .349 0. 000
16 0.400 0.000 0.283 0.283 0.000 0.360 0.174 0.000
17 0.500 0.000 0.354 0.354 0.00O 0.450 0.218 0.000
18 0.600 0.000 0.424 0.424 0.000 C. 540 0.262 0.000
19 0.700 0.000 0.495 0.495 0,000 0.630 0.305 0.000
20 0.800 0.000 0.566 0.566 0.000 0.720 0.349 0.000
21 0.400 0.000 0.283 0.000 0.200 0.360 0.174 0.000
22 0.500 0.000 0.354 0.354 0.300 0.450 0.218 0.000
23 0.600 0.000 0.424 0.020 0.400 0.540 0.262 .000
24 0.700 0.000 0.495 0.495 0.000 0.630 0.305 0.000
25 0.800 0.000 0.566 0. 566 0.56 0. 720 0.349 0.000
23 0.000 0.400 0.283 0.000 0.283 0.360 0.000 0.174
27 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218
28 0.000 0.600 0.424 0. 000 0.424 0. 540 0. 000 C. 262
29 0.000 0.700 0.495 0.000 0.495 0.630 0.000 0.305
30 0. 000 0. 800 0. 566 0. 000 0. 566 0. 720 0.000 0. 349
31 0.000 0.400 0.283 0.000 0.283 0.360 0.000 0.174
32 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218
33 0.000 0.600 0.424 0. 000 0.424 0.540 0.000 0.262
34 0. 000 0. 700 0. 495 0. 000 C. 495 0. 630 0. 000 0. 305
35 0.000 0.800 0.566 0.000 0.566 0.720 0.000 0.349
36 0. 000 0. 400 0.283 0. 000 0. 283 0. 360 0.000 0 174
37 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218
38 0.000 0.600 0.424 0.000 0.424 0.540 0.000 0.262
39 0.000 0.700 0.495 0.000 0.495 0.630 0.000 0.305
40 0.000 0.800 0.566 0.000 0.566 0.720 0.000 0.349
41 0.000 0.400 0.283 0.000 0.283 0.360 0.000 0.174
42 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218
43 0.000 0.600 0.424 0.000 0.424 0.540 0.000 0.262
44 0. 000 0. 700 0. 495 0. 000 0. 495 0. 630 0. 000 0. 305-
45 0. 000 0. 800 0. 566 0. 000 0. 566 0. 720 0. 000 0. 349 """
46 0. 000 0. 400 O,.283 0. 000 0. 283 0. 360 0. 000 0. 174",,47 o.0oo 0.50 0.35 0.000 0.354 0.45 0 .000 0.218"-:-:
48 0.000 0.600 0.424 0.000 0. 424 0.540 0.000 0.262..-



Table 2

Estimated Item Parameters and Item Bias Indices for Case 
1

Item Low High ALGCHI ABSCHI ALGICC ABSICC

a b a b

1 0.376 2.299 0.315 2.977 -4.048 5.452 -0.190 0.201

I 2 0.573 -1.236 0.494 -1.275 -3.803 5.677 -0.036 0.086

3 0.812 -1.426 0.724 -1.440 -4.703 6.963 -0.052 0.061

4 1.067 -0.421 0.932 -0.372 -4.358 5.334 -0.057 0.067

5 1.347 0.305 1.280 0.369 -1.289 1.926 -0.041 0.041

6 0.545 -2.817 0.425 -3.466 -3.666 6.363 0.167 0.204

7 0.538 1.090 0.507 1.087 2.787 4.709 0.029 0.029

* 8 0.739 -1.376 0.794 -1.409 7.715 11.004 -0.032 0.088

9 0.902 -0.134 1.001 0.001 -6.997 7.145 -0.102 0.125

10 1.255 1.712 1.514 1.655 -0.503 4.484 0.085 0.119

11 0.516 3.175 0.337 4.260 2.802 9.961 -0.136 0.243

12 0.725 -2.222 0.400 -3.544 -3.940 12.294 0.479 0.579

13 0.643 0.970 0.702 0.883 1.337 2.353 0.071 0.121

14 0.944 -0.734 1.142 -0.676 3.587 4.891 -0.073 0.141

15 1.147 -0.005 1.145 -0.034 2.783 3.008 0.008 0.025

16 0.470 -1.841 0.388 -2.228 -0.797 4.618 0.112 0.160

* 17 0.703 -2.266 0.584 -2.787 2.986 3.117 0.206 0.213

18 .744 1.457 0.643 1.633 -0.159 0.786 -0.062 0.085

19 1.079 0.077 0.932 -0.095 10.771 10.940 0.104 0.108

20 1.249 -0.305 1.408 -0.324 2.672 3.318 -0.008 0.071

21 0.467 -3.276 0.368 -3.714 -2.494 2.494 0.011 0.122

22 0.534 -2.873 0.548 -2.726 -0.821 3.282 -0.154 0.156
. 2 .. O 0.840 0.751 0.940 -4.45B 4.458 -0.050 0. 103 i'

24 0.836 1.311 1.020 1.260 -3.174 3.676 0.063 0.152

25 1.169 0.002 1.299 0.012 0.300 3.286 -0.017 0.071

26 0.329 -1.876 0.444 -1.379 0.498 10.302 -0.249 0.397

27 0.595 2.672 0.761 2.315 -6.403 10.466 0.216 0.268

28 0.899 -1.356 0.689 -1.649 0.693 3.066 0.124 0.177

29 1.041 -0.318 0.845 -0.400 2.968 5.869 0.031 0. 093

30 1.236 0.366 1.329 0.278 3.790 4.148 0.060 0.074

31 0:366 -3.712 0.523 -2.825 1.711 1.985 -0.336 0.421
32 0.433 -0.075 0.439 0.104 -3. 106 3.199 -0.122 0.126

33 0.682 1.550 0.762 1.429 0.270 1.818 0.107 0.145

34 0.881 0.899 1.041 0.750 3.946 4.817 0.115 0.158

35 1.635 -1.578 1.559 -1.506 -1.956 3.883 -0.112 0.112 " "

36 0.466 -2.097 0.543 -1.705 -5.605 9.614 -0.268 0.298

37 0.550 0.614 0.505 0.569 1.601 1.676 0.042 0.046

* 38 0.709 -0.397 0.765 -0.470 2.556 2.556 0.024 0.093

39 0.929 -0.905 0.871 -0.806 -3.703 3.817 -0.106 0.106

40 1.459 1.592 1.249 1.763 -1.108 1.696 -0.065 0.071

41 0.455 1.121 0.422 1.320 -2.554 4.842 -0.084 0.084

42 0.598 2.598 0.638 2.385 1.048 2.208 0.161 0. 168

43 0.723 -2.345 0.744 -2.306 -0.076 7.559 -0.104 0.109

44 1.186 -1.795 1.314 -1.699 1.605 6.739 -0.134 0.140

45 1.195 -0.376 1.388 -0.365 1.741 2.057 -0.030 0.089

46 0.374 -1.726 0.414 -1.337 -4.564 6.853 -0.246 0.264

" 47 0.533 1.837 0.672 1.615 -2.300 5.605 0.139 0.245

48 0.701 0.459 0.634 0.611 -6.268 10.019 -0.089 0.091

• 49 0.923 -1.255 1.039 -1.242 2.292 2.973 -0.061 0.107

50 1.313 -0.032 1.161 -0.010 -1.833 5.589 -0.025 0.038

................................................... 
,- .-

* . . . . . . . . . . . . - . . . . . . ."



Table 3

Estimated Item Parameters and Item Bias Indices for Case 2

Item Low High ALGCHI ABSCHI ALGICC ABSICC
ab a b

1 0.458 2.215 0.360 2.017 -3.174 8.146 0.014 0.156
2 0.639 -0.770 0.561 -1.312 -5.741 8.506 0.157 0.175
3 0.710 -1.231 0.770 -1.732 -13.929 13.929 0.142 0.142
4 0.645 -0.148 0.902 -0.742 30.620 30.620 0.197 0.197--
5 1.462 0.522 1.235 0.058 20.640 20.640 0.114 0.122
6 0.390 -3.519 0.424 -3.426 -1.850 8.668 -0.125 0.130
7 0.467 1.602 0.524 0.993 7.276 8.870 0.174 0.164
8 0.630 -1.368 0.656 -1.886 9.770 9.861 0.151 0.151
9 0.865 0.238 1.000 -0.220 7.410 9.310 0.111 0.124

10 1.382 2.051 1.243 1.408 26.633 26.638 0.221 0.221
11 0.429 3.630 0.382 3.444 2.319 2.542 0.019 0.071
12 0.614 -2.339 0.768 -2.296 1.910 3.914 -0.165 0.205
13 0.720 1.145 0.640 0.693 13.512 13.512 0.107 0.125
14 0.849 -0.559 1.010 -1.024 17.991 17.991 0.118 0.138
15 1.257 0'.282 1.356 -0.251 2B.944 28.944 0.158 0.158
16 0.465 -1.931 0.471 -2.086 -0.982 1.384 -0.063 0.063
17 0.618 -2.246 0.565 -2.869 3.029 3.029 0.188 0.190
18 0.664 1.725 0.724 1.207 4.993 5.009 0.137 0.140
19 0.824 0.304 1.049 -0.230 21.165 21.165 0.158 0.189
20 1. 230 0.024 1.382 -0.597 44.414 44.414 0.213 0.213
21 0.371 -3.318 (3.631 -2.660 6.535 6.535 -03.309 0.471
22 0.439 -3.300 0.538 -3.125 3.057 3.897 -0.153 0.195
23 0.665 1.285 0.696 0.723 9.209 9.209 0.169 0.169
24 0.971 1.571 1.177 0.932 18.721 19.246 0.219 0.223
25 1.010 0.259 1.240 -0.338 35.505 35.505 0.197 0.203
26 0.395 -1.508 0.419 -1.255 -12.430 12.691 -03.288 0.288
27 0.775 2.337 0.588 2.571 3.203 5.435 -0.260 0.294
28 0.791 -1.386 0.727 -1.456 -8.428 8.428 -0.127 0.129
29 (0.832 -0.337 0.997 -0.429 -6.941 7.618 -0.114 0.140

30 1.239 0.321 1.220 0.243 -12.322 12.322 -0.125 0.125
31 0.549 -2.724 0.528 -3.007 -0.390 3.987 -0.002 0.029
32 0.469 -0.038 0.510 -0.058 -15.494 15.494 -0.225 0.225
*z3~ 03.724 1.479 0.790 1.377 -7.035 7.036 -0.115 0:116
34 1.030 0.745 0.885 0.731 8.455 9.966 -0.165 0.172
35 1.238 -1.819 1.729 -1.584 -7.677 7.682 -0.314 0.317
.36 0.374 -2.339 0.470 -1.831 -10.416 11.569 -0.366 0.387
37 0.526 0.641 0.527 0.494 -5.138 6.181 -0.080 0.0380
38 0.694 -0.417 0.657 -0.522 -10.677 11.024 -0.106 0.107
39 1.044 -0.741 0.998 -0.818 -10.065 10.065 -0.123 0.123
40 1.254 1.665 1.799 1.475 -12.822 12.e22 -0.060 0.130
41 0. 323 1. 602 0.385 1.423 -12.457 13.577 -0.107 0.171
42 0.555 2.991 0.473 3.133 1.740 3.859 -0.160 0.180
43 0.900 -1.965 0.874 -1.987 -5.678 5.678 -0.154 0.154
44 1.027 -1.813 1.214 -1.658 -6.261 6.696 -0.263 0.264
45 1.266 -0.383 1.507 -0.317 -36.489 36.822 -0.213 0.213
46 0.439 -1.277 0.403 -1.318 -6.015 6.015 -0.146 0.150
47 0.574 1.618 0.760 1.440 -16.932 16.932 -0.083 0.201

*48 0.632 0.497 0.729 0.533 -22.701 22.701 -0.197 0.203
49 0.932 -1.285 1.002 -1.234 -9.080 9.161 -0.200 0. 20C3

*50 1.286 -0.057 1.398 -0.075 -23.223 23.223 -0.161 0.161



Table 4

Estimated Item Parameters and Item Bias Indices for Case 3

Item Low High ALGCHI ABSCHI ALGICC ABSICC
a b a b

1 0.428 2.092 0.418 2.201 0.426 1.362 0.010 0.028
2 0.544 -1.138 0.486 -1.338 4.766 5.649 0.209 0.221
3 0.730 -1.423 0.697 -1.416 0.015 1.404 0.089 0.093
4 0.890 -0.382 0.996 -0.398 3.792 3.792 0.102 0.110
5 1.193 0.274 1.307 0.362 -1.045 1.528 0.022 0.041
6 0.452 -3.295 0.363 -3.782 -0.879 1.800 0.164 0.216
7 0.482 1.042 0.481 1.177 -6.447 1.049 -0.014 0.018
8 0.783 -1.562 0.696 -1.431 -2.069 6.701 0.000 0.094
9 0.902 -0.069 0.919 0.020 5.175 6.134 0.024 0.024
10 0.977 2.016 1.284 1.616 -0.968 6.064 0.338 0.343
11 0.368 3.801 0.443 3.384 -1.567 1.458 0.079 0.120
12 0.570 -2.658 0.368 -3.852 -1.508 7.111 0.473 0.536
13 0.624 0.935 0.694 0.892 1.560 3.881 0.098 0.114
14 0.831 -0.935 0.800 -0.780 -4.486 4.640 -0.016 0.037
15 1.119 0.009 1.206 -0.006 5.901 6.537 0.097 0.098
16 0.487 -1.898 0.434 -2.056 -0.291 1.125 0.152 0.177
17 0.585 -2.619 0.684 -2.453 3.884 3.886 0.024 0.098
16 0.594 1.558 0.718 1.312 0.708 4.051 0.210 0.233
19 0.843 -0.166 1.167 -0.055 -3.545 6.103 0.009 0.181
20 1.086 -0.367 1.111 -0.326 5.030 6.590 0.061 0.061
21 0.400 -3.615 0.531 -2.684 -1.157 1.848 -0.274 0.317
22 0.539 -2.707 0.692 -2.168 -0.606 1.758 -0.193 0.246
23 0.696 0.808 0.689 O.865 0.077 1.204 0.039 0.039
24 0.819 1.415 0.910 1.179 7.799 9.005 0.234 0.234
25 1.353 -0.046 1.314 0.006 0.191 0.763 0.050 0.051
26 0.333 -1.822 0.428 -1.272 -5.806 6.658 -0.177 0.277
27 0.402 3.443 0.606 2.521 -0.739 3.094 0.296 0.366
28 0.665 -1.613 0.560 -1.948 3.241 9.111 0.296 0.309
29 0.677 -0.598 0.719 -0.438 -1.477 7.116 -0.021 0.041
30 0. 942 0. 234 0. 938 0. 438 -5. 093 5. 093 -0.060 0. 060 "-'
31 0.429 -3.685 0.330 -4.217 -3.378 4.137 0.101 0.191
32 0.417 -0.220 0.491 -0.006 -1.890 3.074 -0.063 0.156
33 0.548 1.637 0.622 1.543 -0.753 2.362 0.104 0.129
34 0.808 0.712 0.865 0.911 -6.034 6.034 -0.062 0.066
35 1.033 -1.935 1.031 -1.737 -7.158 9.308 -0.037 0.037
36 0.406 -2.269 0.463 -2.005 0.048 1.128 -0.028 0.107
37 0.412 0.571 0.562 0.674 -5.583 6.111 -0.032 0.277
38 0.565 -0.658 0.651 -0.486 -3.043 4.921 -0.027 0.114
39 0.889 -0.902 0.872 -0.861 0.877 1.945 0.066 0.066
40 0.856 1.935 1.089 1.840 -3.726 3.726 0.119 0.162
41 0.344 1.590 0.392 1.365 1.107 1.141 0.140 0.165
42 0.470 3.248 0.509 3.016 -0.906 4.308 0.113 0.115
43 0.853 -2.206 0.684 -2.291 -6.372 6.526 0.134 0.194

44 0.773 -2.421 0.685 -2.333 6.991 7.316 0.024 0.091
45 0.809 -0.564 0.932 -0.355 -2.375 10.799 -0.057 0.097
46 0.309 -1.867 0.337 -1.522 -1.696 3.083 -0.085 0.102
47 0.461 1.937 0.484 2.097 -1.589 3.031 -0.050 0.050
48 0.587 0.318 0.673 0.378 0.694 5.402 0.035 0.108
49 0.728 -1.527 0.799 -1.330 1.806 9.546 -0.036 0.065
50 0.913 -0.161 1.059 -0.016 -5.412 13.391 -0.015 0.080

....- .-. . . . . . . . . . . .



- .°-.. - I............................

Table 5

Estimated Item Parameters and Item Bias Indices for Case 4

Item Low High ALGCHI ABSCHI ALGICC ABSCHI
a b a b

1 0.426 2.574 0.404 1.829 10.559 11.450 0.337 0.337
2 0.535 -0.767 0.530 -1.511 -13.158 10.421 0.315 0.315
3 0.616 -1.119 0.837 -1.697 23.376 23.376 0.222 0.301
4 0.850 0.003 0.813 -0.758 22.761 22.761 0.356 0.356
5 1.135 0.658 1.158 -0.023 22.457 22.457 0.320 0.320
6 0.421 -3.231 0.478 -3.310 1.240 4.849 -0.046 0.117
7 0.504 1.497 0.478 0.651 15.123 15.123 0.419 0.419
8 0.558 -1.373 0.692 -1.897 15.829 16.073 0.186 0.241
9 0.821 0.361 0.897 -0.368 20.310 20.310 0.344 0.344

10 1.255 2.043 1.195 1.366 11.764 11.768 0.349 0.349
11 0.488 3.393 0.453 2.827 4.570 5.764 0.243 0.243
12 0.528 -2.321 0.575 -2.929 8.271 9.191 0.208 0.208
13 0.596 1.455 0.675 0.591 15.110 15.110 0.433 0.434
14 0.890 -0.422 0.891 -1.215 26.078 26.063 0.368 0.368
15 0.964 0.399 1.178 -0.366 36.834 36.834 0.368 0.371
16 0.367 -2.100 0.453 -2.604 8.657 8.657 0.208 0.250
17 0.610 -2.182 0.634 -2.774 4.000 4.000 0.192 0.192
18 0.701 1.771 0.787 0.984 10.943 11.730 0.397 0.397
19 0.794 0.303 0.938 -0.390 26.688 27.380 0.318 0.322
20 1.003 0.045 1.076 -0.739 38.303 38.303 0.372 0.372
21 0.396 -3.191 0.272 -5.900 10.108 10.191 0.556 0.561
22 0.559 -2.263 0.609 -3.204 17.224 17.225 0.398 0.398
23 0.684 1.361 0.716 0.472 24.310 24.307 0.461 0.461
24 0.955 1.656 0.895 0.801 38.676 38.776 0.455 0.455
25 1.505 0.413 1.250 -0.340 42.037 42.037 0.361 0.361
26 0.349 -1.671 0.374 -1.565 -13.020 13.020 -0.179 0.190
27 0.570 2.724 0.502 2.887 -4.526 5.730 -0.115 0.123
28 0.715 -1.412 0.587 -1.740 -7.704 7.704 0.025 0.124
29 0.902 -0.364 0.693 -0.582 -16.029 16.237 -0.010 0.153
30 1.167 0.348 0.971 0.360 -42.443 42.444 -0.141 0.149
31 0.376 -3.916 0.357 -4.238 -3.146 5.248 -0.025 0.025
32 0.498 0.090 0.501 -0.035 -14.380 17.655 -0.056 0.062
33 0.650 1.434 0.736 1.457 -27.328 27.328 -0.132 0.155
34 0.883 0.702 0.731 0.907 -41.155 41.155 -0.255 0.259
35 0.909 -2. 065 0.993 -1.880 -24.808 24.808 -0.304 0. 305
36 0.495 -1.775 0.352 -2.829 0.989 5.493 0.313 0.384
37 0.503 0.408 0.397 0.651 -21.845 21.845 -0.251 0.290
38 0.527 -0.657 0.530 -0.646 -24.102 24.145 -0.157 0.157
39 0.837 -0.783 0.739 -0.920 -1B.781 18.781 -0.071 0.086
40 0.973 1.951 1.124 1.824 -15.673 15.673 -0.018 0.090
41 0.283 1.833 0.440 1.301 -17.019 17.342 0.030 0.436
42 0.486 3.015 0.697 2.190 -7.502 7.518 0.283 0.366
43 0.587 -2.746 0.719 -2.520 -3.603 4.116 -0.275 0.298
44 0.909 -1.904 0.898 -1.980 -11.204 13.498 -0.134 0.134
45 1.063 -0.373 0.925 -0.385 -38.185 38.185 -0.143 0.146
46 0.391 -1.405 0.299 -1.792 -9.118 9.118 -0.007 0.220
47 0.505 1.994 0.538 1.853 -13.555 13.618 -0.026 0.076
48 0.829 0.404 0.588 0.395 -16.430 16.430 -0.119 0.249
49 0.808 -1.388 0.837 -1.460 -12.9?06 13.186 -0.124 0.125
50 1.076 0.078 0.909 -0.112 -12.018 12.018 -0.016 0.074

................................. .......... ..... ................ . .... I
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